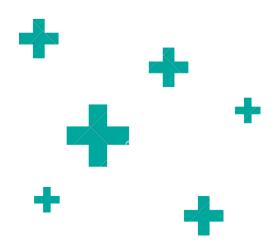
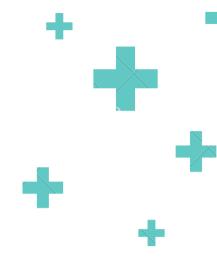


Health forecasting and Medical Inventory Optimisation

Using Plaksha's Health Care Centre Data



PROBLEM STATEMENT



- Predicting prevalent symptoms and health problems on campus 01
 - Analyse Plaksha's Healthcare data to predict the prevalence of symptoms and health problems at various times of the year by utilising machine learning techniques
- Developing a Medical Inventory Optimisation System 02
 - Leverage the predictions of symptoms to optimise the management of healthcare resources such as medicines and medical supplies

Our goal is to enhance the campus healthcare system's ability to prepare for any significant health challenges, inventory adjustments, and ensure the timely availability of necessary medical resources.

APPLICATIONS AND IMPACT

INVENTORY OPTIMIZATION

Efficient procurement and management of medical supplies and resources to minimise waste and ensure on-time availability

DATA-DRIVEN CAMPUS HEALTH POLICIES

Evidence-based healthcare policies to ensure the health and safety of the campus community and be more aware and take preventative Healthcare measures based on future predictions

LITERATURE REVIEW

META-ANALYSIS AND 01 **SCOPING REVIEWS**

of Historical machine use learning techniques being used in population healthcare forecasting

REPORTS AND STUDIES 02

Use of time series analysis as well as logistic regression; COVID-19 forecasting models

Models being used: LSTM, Regression models, ARIMA and SEIR

horizons. Yet, these differences are important since forecasting future events is based on a strong assumption that the current drivers or predictors will also follow the trend over the future horizon. Hence, long-range forecasting

methods. For instance, the Box–Jenkins ARIMA model, is commonly used in fitting forecasting models when dealing with a non-stationary time series, and this model has been used extensively in health forecasting [27, 33, 52–55]. *Stationarity* is a feature of trend in a time series, and refers to the level of variation in the statistical properties (such as the mean, variance, auto-correlation, etc.) over time. Smoothing models have also been used in health Lag refers to the lapse of time before an effect is manifested. Lags have proven useful in forecasting events globally, and are a feature of time series data that is widely exploited in many forecasting techniques, e.g. in auto regressive integrated moving averages (ARIMA) [27]. In

components in the data. For instance, in health data, an overall record of a progressively increasing incidence over a specified period would show an increasing trend, irrespective of any random or systematic fluctuations.

Soyiri, I.N., Reidpath, D.D. An overview of health forecasting. Environ Health Prev Med 18, 1–9 (2013). https://doi.org/10.1007/s12199-012-0294-6

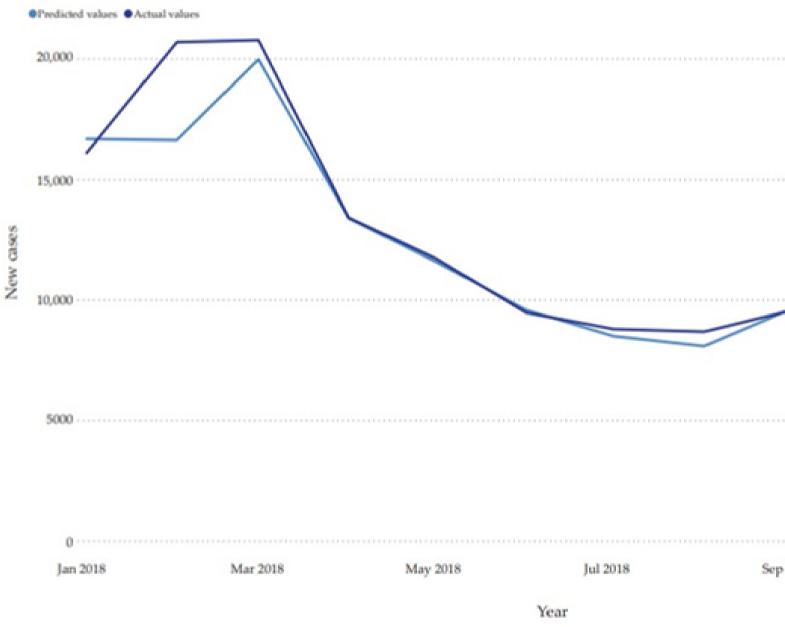
Forecasting a health condition or situation for a population aggregate of a particular problem, or for groups of the same *family*, presents a lesser challenge than doing so for an individual case. This is because by pooling the variances of the population-related factors (which are usually broad and well known), the behavior of the aggregated data can have very stable characteristics, even when the individuals within exhibit high degrees of randomness [45]. It is therefore easier to obtain a higher degree of accuracy in forecasting specific health events when using pooled population data versus data for specific individuals.

as emergency department visits [26, 27]. These individual studies adapted environmental, climatic and other factors as predictors in forecasting health. They are very specific

Morgenstern JD, Buajitti E, O'Neill M, et alPredicting population health with machine learning: a scoping reviewBMJ Open 2020;10:e037860. doi: 10.1136/bmjopen-2020-037860

model forms of regression analysis, such as Poisson regression models [34], the SARIMA (seasonal autoregressive integrated moving average) model developed from the autoregressive integrated moving average (ARIMA) model became one of the most used forecasting models [26,27]. Beyond

Data preparation of this sort allows for modern ML techniques such as XGBoost (eXtreme Gradient Boosting) and LightGBM (Light Gradient Boosting Machine), to be used, which again presents another challenge and layer of decisions to be made for researchers wishing to use these techniques, as the models' hyperparameters must be optimized, the model code implemented, and the models trained and validated appropriately on historical data. Automated time series machine learning (AutoTS) addresses


Olsavszky V, Dosius M, Vladescu C, Benecke J. Time Series Analysis and Forecasting with Automated Machine Learning on a National ICD-10 Database. International Journal of Environmental Research and Public Health. 2020; 17(14):4979. https://doi.org/10.3390/ijerph17144979

Lower respiratory infections

Predicted vs. actual values 2018 (counts/month)

Olsavszky V, Dosius M, Vladescu C, Benecke J. Time Series Analysis and Forecasting with Automated Machine Learning on a National ICD-10 Database. International Journal of Environmental Research and Public Health. 2020; 17(14):4979. https://doi.org/10.3390/ijerph17144979

\sim	
/	
2018	Nov 2018

HOW IS OUR MODEL DIFFERENT?

We are employing regression on time series data to forecast the number of new cases within a specific symptom group over a three-month period (from September to November 2023). What sets our approach apart is the application of forecasting to the broader context of population health. We conducted time series forecasting for multiple symptom groups at the university level, incorporating techniques such as data aggregation and leveraging diverse ML models. Furthermore, our aim is to extend this application to optimize medicine inventory management, contributing to more efficient healthcare resource allocation.

DATASET AND FEATURES

Data collection, pre-processing

DATA COLLECTION Plaksha's healthcare centre's data

We had to take permission from the Assistant Manager of Administration at Plaksha, Mr. Ankur Wadhwa, to access the HCC data. We asked for anonymised data so as to maintain privacy of individuals.

NATURE OF DATA

Num. of Features

DATA CLEANING

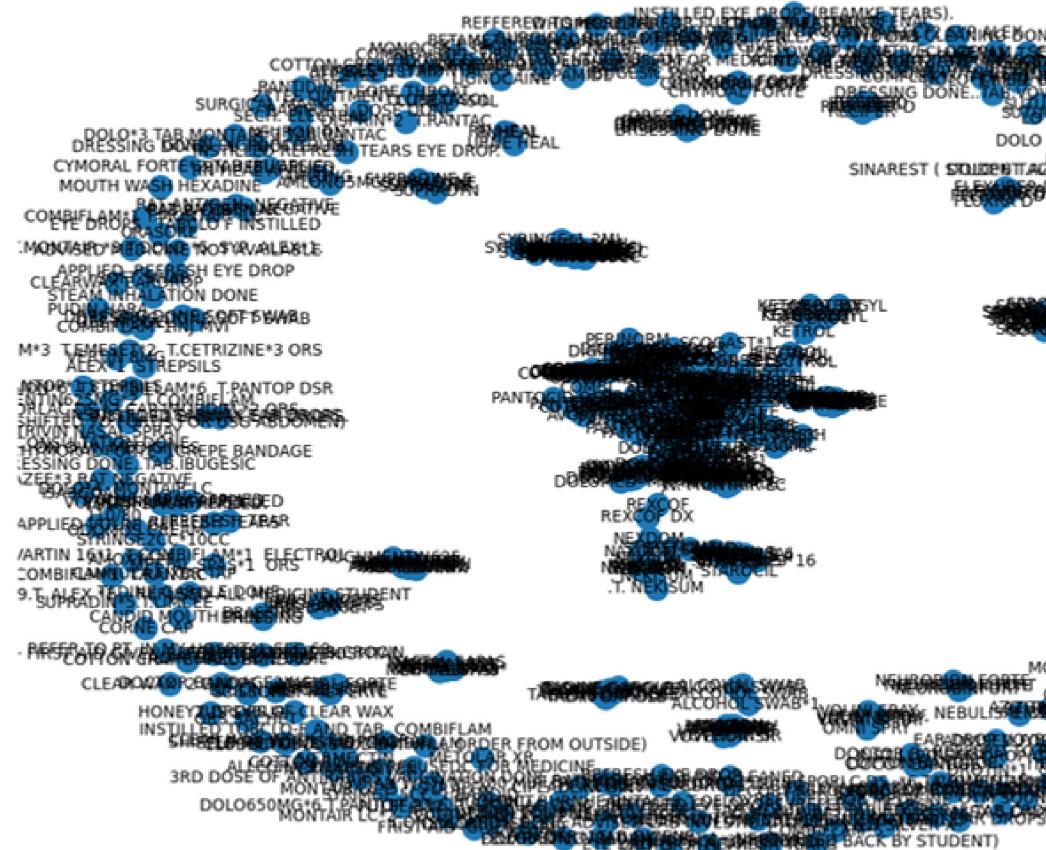
Sr.no	Date Of Visit	student/staff	department	age	gender	diagnosis	Treatment	vitals
1	01/08/22	student	TLP		25 F	Indigestion	Tab. Reciper*1	
2	01/08/22	student	TLP		25 F	Sore throat, Cold	Tab. Sinarest*4, Tab. Montair LC*3	
3	01/08/22	student	TLP		26 F	Sore throat, Cold, Cough	Tab. Sinarest*4, Tab. Montair LC*3, Rexcof DX*1	
4	02/08/22	student	TLP		35 M	Nausea, Vomiting	Tab.Emeset *1,ORS*1	
5	02/08/22	student	TUP		31 F	Sore Throat	Tab.Montair Lc*1	
6	02/08/22	staff	TA		21 M	Sprain on both legs and hand	Volini Spray applied, Tab. Dolomed MR*1	
7	02/08/22	staff	labour		35 M	Gastric problem, acidity	Eno*1, inj. Pantop*1	
8	02/08/22	student	UG		26 F	Loose Motion	Tab. Sporolac DS*10, Tab. Drotin*1	
9	02/08/22	student	TUP		28 M	Sore Throat, Cough	Tab. Azee*3, Tab. Montair LC*1, Syp. Rescof DX	
10	02/08/22	staff	TLP		31 M	Lt. foot wound	Dressing done	
11	03/08/22	student	TUP		36 F	Fever ,Spre Throat ,Mild Cuogh	Tab.Montair Lc*4, Tab.Dolo*1, Tab.Reciper*6, Tab.Anxit*1	
12	03/08/22	staff	TLP		25 M	Lt. foot wound	follow up done	
13	03/08/22	staff	TLP		35 M	ILI syptoms	Tab.Azee*3,Tab.Montair Lc*3,Tab.Dolo*6	
14	03/08/22	student	labour		21 F	Loose Motion	Tab. Sporolac DS*1, Tab. Reciper*1, Tab. Dolo*1	
15	03/08/22	staff	TA		22 F	bodyache	Tab.Dolo*1	
16	03/08/22	staff	HK staff		24 M	bodyache	Tab.Dolo*1	
17	03/08/22	staff	HK staff		26 M	Toothache	Tab.Brufen*1	
18	03/08/22	student	TLP		19 F	Runny Nose	Tab.Sinarest*7,Tab.MontairLc*3,Limcee*6	
19	03/08/22	student	Maintanance		20 F	Headache, Bodyache	Tab. Dolo*1	
20	03/08/22	student	TLP		20 F	bodyache	Tab. Dolo*1	
21	04/08/22	student	TLP		24 M	Fever ,Spre Throat ,Mild Cuogh	Tab.Combifiam*2,Tab.Azee*3,Tab.MontairLC*2,Tab.Limcee*6,	Temp-100F
22	04/08/22	student	TLP		26 M	Sore Throat, Cough	Betadine Gargle*1	
23	04/08/22	sdudend	TLP		28 F	Cut Wound Lt.Foot	Dressing done, soft Swab*1, Bandage4inch*1	
24	04/08/22	staff	Security Staff		31 M	Bodyache	Tab. Dolo*2,	
25	04/08/22	staff	Maintanance		22 M	Headache	Tab. Crocin*1	
26	04/08/22	staff	HK staff		32 F	Anxiety	Tab. Dolo*1, Tab. Reciper*1	
27	05/08/22	staff	BCMS		23 F	Cold	Tab. Sinarest*1	
28	05/08/22	staff	Faculty staff		23 M	pain in abdomen	Tab. Metrogyl*9, Tab. Dolo*9, Tab. Panticid*9	
29	05/08/22	staff	HK staff		26 M	Headache	Tab.Dolo*1, Tab. Emset*1	
30	05/08/22	staff	BCMS		24 F	Sore throat, Fever	Tab.Azee*3,Tab.Montair Lc*3,Tab.combifiam*6,tab.pan DSR*3	
31	05/08/22	staff	BCMS		28 F	COVID	tab.pan DSR*1,tab.Montair Ic*3	
32	05/08/22	student	TUP		29 M	Acidity	Tab.Pan DSR*2	
33	05/08/22	staff	BCMS		21 M	vomiting	Tab.Emset*3	
34	06/08/22	staff	TLP		19 F	ILI syptoms	TAB Azee*2,tab.montair*4,tab.Pan DSR*2	
35	06/08/22	staff	HK staff		19 F	bodyache, acidity	Tab.Dolo*1,tab.Pan DSR*1	
36	06/08/22	staff	HK staff		20 M	Dysmenorhea	tab.maftal Spas*1	
37	06/08/22	student	Tip		20 M	Cut Wound Lt.Foot	Dressing Done Soft Swab *1	
38	06/08/22	student	UG		18 F	Dysmenorhea	Tab.Meftal spas*1	
39	06/08/22	student	TLP		35 M	Acidity	tab.pan DSR*1	
40	06/08/22	staff	PRF		21 M	ILI syptoms	Tab.combifiam1,MontairLc*1	
41	06/08/22	student	TLP		22 M	Cut Wound Lt.Foot	soft Swab*1,Bandage4inch*1,Dressing done	
42	07/08/22	staff	PRF		20 M	ILI syptoms	tab.Azee*3,tab.Dolo*7,tab.pan dsr*3	

Original Data

FEATURE - SYMPTOM

- Separated symptoms into six aggregate symptom groups based on literature survey - simplifying assumptions made due to limited data availability.
- For example, URI (Upper respiratory infection) includes cold, cough, etc.
- Performed feature encoding
- For each date, calculated frequency of occurence of each aggregate group

index	URI	HEADACHE	GASTROINTESTINAL DISORDER	FEVER	AQI	Max Temp	Min Temp	FATIGUE_C	OTHERS
02-11-2021	0	1	0	0	100	30	17	0	0
03-11-2021	0	0	0	0	96	31	16	0	0
04-11-2021	0	0	0	0	84	31	16	0	0
05-11-2021	0	0	0	0	118	30	17	0	0
06-11-2021	0	0	0	0	79	30	15	0	0
07-11-2021	0	1	0	0	97	30	16	0	0
08-11-2021	0	0	0	0	93	28	15	1	0
09-11-2021	0	0	0	0	87	27	16	0	0
10-11-2021	1	0	0	1	91	25	16	1	0
11-11-2021	1	0	0	1	93	29	13	0	0
12-11-2021	0	0	0	0	94	28	13	0	0
13-11-2021	2	2	2	0	88	29	11	2	0



FEATURE - TREATMENT

- Split treatment into different columns of medicines
- Create a list of medicine names that appear only once potential misspellings
- Calculate Levenshtein distance between all pairs of medicine names
- Organise the potential misspellings into clusters based on the clustering labels obtained
- Map the labelled clusters manually to correct spelling names
- Update the data frame with corrected medicine names

(dest_functions, functions), ds; ["strengen tem nows, "strengen typinge"], ds; ["strengen tem, "strengen, "strengen

IACEBONE ORS* REXCOF DX DOLO SEDUS PAKE FRO SE 3 TAY DOCTOR REF CLOTRIMAZO ADINE -----C*2 SY POEALER CLEAN WITH BET ARREARING CIN APPLIED ' AND BANSAPLAS AND BWAFEBR AND APPLIED IC ADVISED WOTTABLE OLD TAPE TAB. CROCI DMG BCLO F COMBIFLAM 2 AMANTAC ERAPY PRATION ROL N*3 SYPALEX

FEATURE ENGINEERING

Air Quality Index

Data Source: Central Pollution Control Board, Ministry of **Environment**, Forests and Climate Change

Major Pollutant

Data Source: Central Pollution Control Board, Ministry of Environment, Forests and Climate Change

Min. Temperature

Data Source:

AccuWeather - 3rd party weather forecast provider. Gets data from Google Cloud and other sources

Max. Temperature

Data Source: AccuWeather - 3rd party weather forecast provider. Gets data from Google Cloud and other sources

MISSING VALUES

Air Quality Index

Applied regression to fill in missing values

Min/Max Temperature

Interpolation: averaging previous and next value to get an estimate of the value

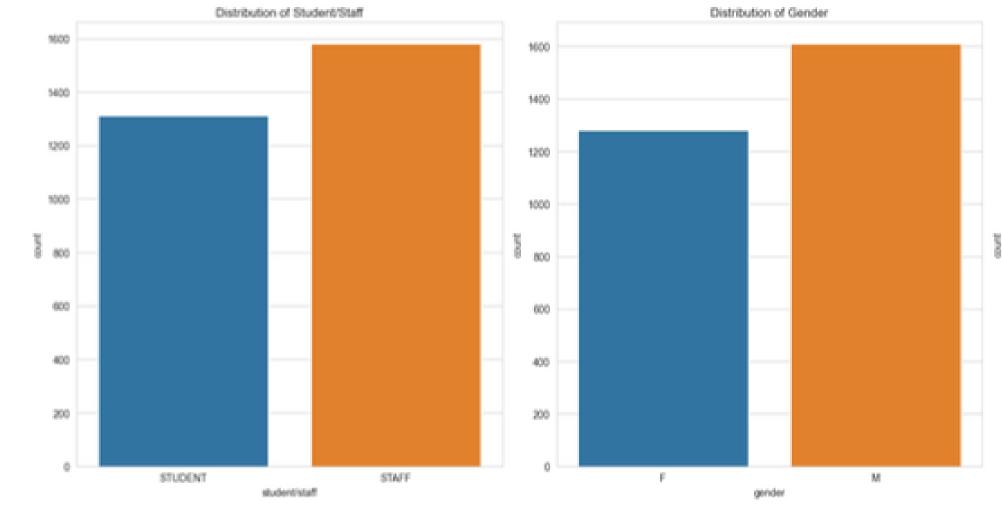
Symptoms

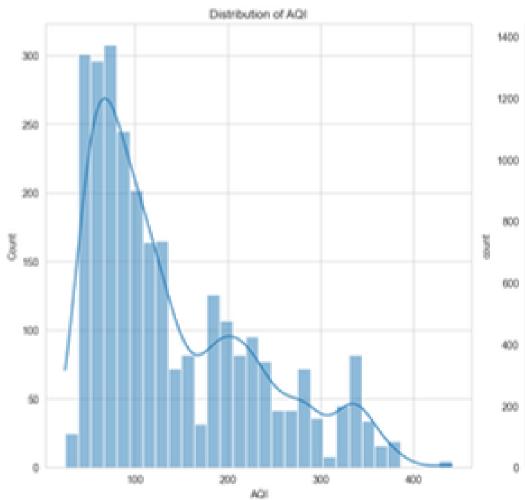
Mapped treatments to most probable symptom values

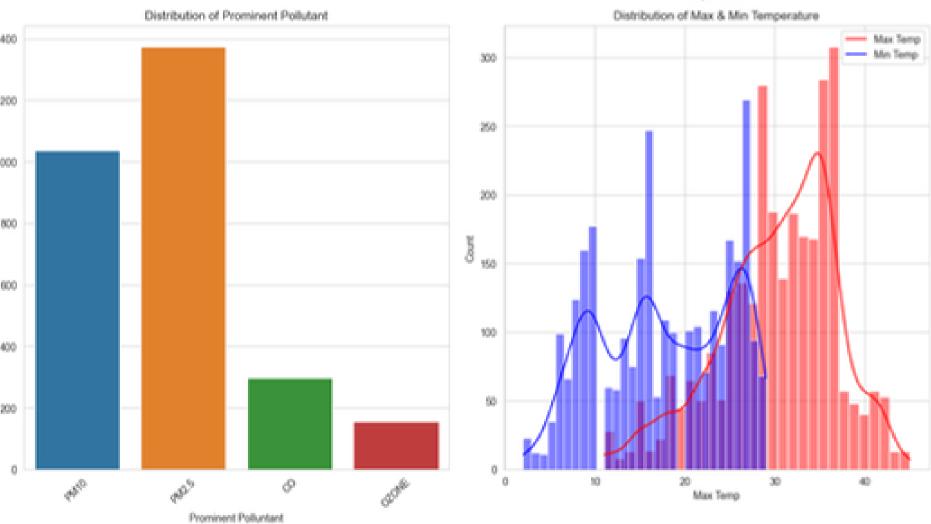
CLEANED DATA

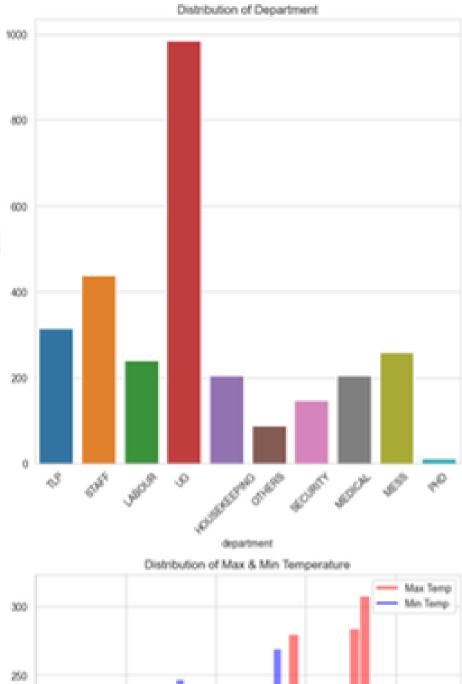
Date Of Visit	student/staff	department	gender	AQI	Prominent Pollutant	Max Temp	Min Temp	Olagnosis_1	agnosis Jagnosis Jagnosis	s Treatment
2021-11-02 00:00:00	8.00AM	TLP	1	100	PM10	30		17 HEADACHE		0010
2021-11-07 00:00:00	7.00AM	TUP	M	97	PMID	30		16 HEADACHE		SARIDON
2021-11-08-00:00:00	2PM	TA	M	93	PMID	2.8		1.5	NAUSEA	CONSULTATION
2021-11-10 00:00:00	7.00AM	MAINTANANCE	M	91	PMID	25		16 FEVER		0010650
2021-11-10 00:00:00	12.00PM	TUP	F	91	PMI0	25		16 MYALGIA		COMBIFLAM
2021-11-10 00:00:00	9.30AM	HK SSAFF	M	91	PMID	25		L6 URI		
2021-11-11 00:00:00	10PM	TUP	M	93	PMID	29		13 FEVER		OVSERVATION DONE FOR 1/2 HRS
2021-11-11 00:00:00	10PM	SECURITY STAFF	M	93	PMID	2.9		13 URI		MONTABLE
2021-11-13 00:00:00	3.52PM	HK STAFF	I .	88	PMID	29		11 GASTROINTESTINAL DISORDER		DOLO /650MG
2021-11-13 00:00:00	5;30PM	BCMS	F	88	PMID	29		11 GASTROINTESTINAL DISORDER		
2021-11-13 00:00:00	2.55PM	BCMS	M	88	PMID	29		11 HEADACHE		COMBIFLAM
2021-11-13 00:00:00	4.26PM	PAF	M	88	PMI0	29		11 HEADACHE		COMBIFLAM
2021-11-13 00:00:00	8PM	UG	M	88	PMID	2.9		11 MYALGIA		COMBIFLAM
2021-11-13 00:00:00	2PM	BCM5	1	88	PMID	29		1.1 URI	MTRALGIA	STEAM INHALATION
2021-11-13 00:00:00	2,50PM	TUP	M	88	PMS0	2:9		11 URI		MONTABLE
2021-11-14 00:00:00	11.55AM	ACADEMICS	M	90	PMID	26		13 ULCER		CAP
2021-11-14 00:00:00	2.50PM	BCMS	M	90	PMID	26		13 URI		MONTAIRLC
2021-11-15 00:00:00	3:20PM	VC SON	M	89	PMID	29		13 FATIGUE		ELECTRAL GIVEN
2021-11-15 00:00:00	4:12PM	UG	1	89	PM10	29		13 HEADACHE		COMBIFLAM
2021-11-15-00:00:00	8.55PM	DINNING	M		PMID	29		13 URI		MONTABLE
2021-11-15 00:00:00	9.30PM	BCMS	M		PM10	29		13 URI		MONTABLE
2021-11-16 00:00:00	1:16PM	HK STAFF	1		PMID	28		13 URI		MONTARLC
2021-11-16-00-00-00	7.15PM	TUP	M		PMID	2.8		13 URI		SYRUP HONEYTUS
2021-11-17 00:00:00	3.35PM	TLP	M		PM10	26		13 GASTROINTESTINAL DISORDER		DOLD / 650MG
2021-11-17-00:00:00	10AM	TLP	M		PMID	26		13 URI		MONTABLE
2021-11-18 00:00:00	\$:30PM	UG	1		PM10	29		11 MYALGIA		COMBIFLAM
2021-11-18 00:00:00		BCM5	M		PM10	29		11 URI		STEAM
2021-11-18 00:00:00		BCMS	M		PMID	2.9		11 URI		SVICKS
2021-11-19 00:00:00		SECURITY STAFF	1		PM10	28		11 MYALGIA	URI	COMBIFLAM
2021-11-19 00:00:00		TLP	1		PMID	28		11 URI		CITRAZIN
2021-11-21 00:00:00		TA	1		PMID	28		11 NAUSEA	GASTRI HEADACHE	COMBIFLAM
2021-11-21 00:00:00	9.30AM	HORTICULTURE	M		PM10	28		11 URI		MONTARLC
2021-11-21 00:00:00		HK STAFF	1		PMID	2.8		11 URI		MONTARLC
2021-11-21 00:00:00		LABOUR	M		PM10	28		11 URI		MONTARLC
2021-11-21 00:00:00		LABOUR	1		PMID	28		11 URI		MONTAIRLC
2021-11-22 00:00:00		TLP	M		PMID	28		11 GASTROINTESTINAL DISORDER		COMBIFLAM
2021-11-22 00:00:00		AUDIT VISITOR	1		PM10	28		11 URI		CITRAZN
2021-11-22 00:00:00		TA	M		PMID	28		11 URI		SYRUP HONEYTUS
2021-11-23 00:00:00		PHD	M		PM10	27		8 FEVER	HEADA NAUSEA	COMBIFLAM
2021-11-23 00:00:00		TUCK SHOP	M		PM10	27		8 NAUSEA	FEVER	00L0650
2021-11-23 00:00:00		1.2	M		PMID	27		8 URI		MONTAIRLC
2021-11-24 00:00:00		1.2	M		PM10	28		9 NAUSEA	NAUSEA	DMEST
2021-11-24 00:00:00		1.2	M		PM10	28		9 UN		MONTARLC
2021-11-24 00:00:00		11.9	M		PM10	28		9 URI		CITRAZIN
2021-11-25-00-00-00		1.2	M		PM10	27		9 FEVER	URU	COMBILA
2021-11-25 00:00:00		1.2	M		PM10	27		9 GASTRONTESTINAL DISORDER	1.1	DIGIN
2021-11-25 00:00:00		MAINTANANCE	M		PMID	27		9 GASTROINTESTINAL DISORDER		SPROLACDS
2021-11-25 00:00:00		TUP			PMID	27		9 HEADACHE		COMBELAM
2021-11-26 00:00:00		TUP	1		PMID	26		10 GASTROINTESTINAL DISORDER		SPROLACDS
2021-11-26 00:00:00		TUP						10 URI		
		107			PM10 PM10	26		10 URI		AZEE MONTAR LC
2021-11-26 00:00:00						26				
2021-11-27 00:00:00		LABOUR	M		PM10	23		13 ALLERGY	1184	ALLEGRA
2021-11-29 00:00:00	2.30PM	TA UG			PM10 PM10	27		12 NAUSEA 11 GASTROINTESTINAL DISORDER	URU .	OTRAZN

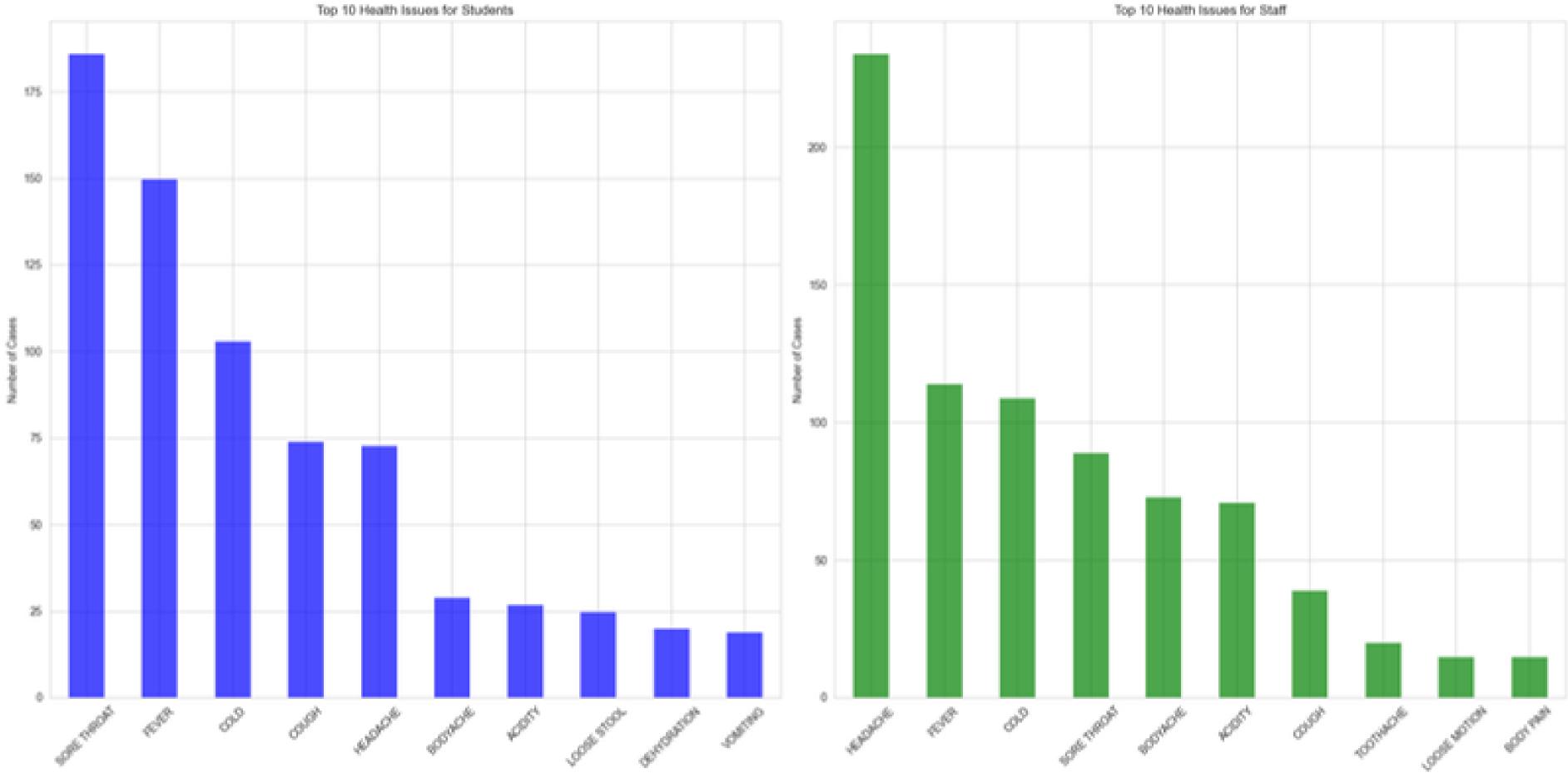
TRANSFORMED DATA

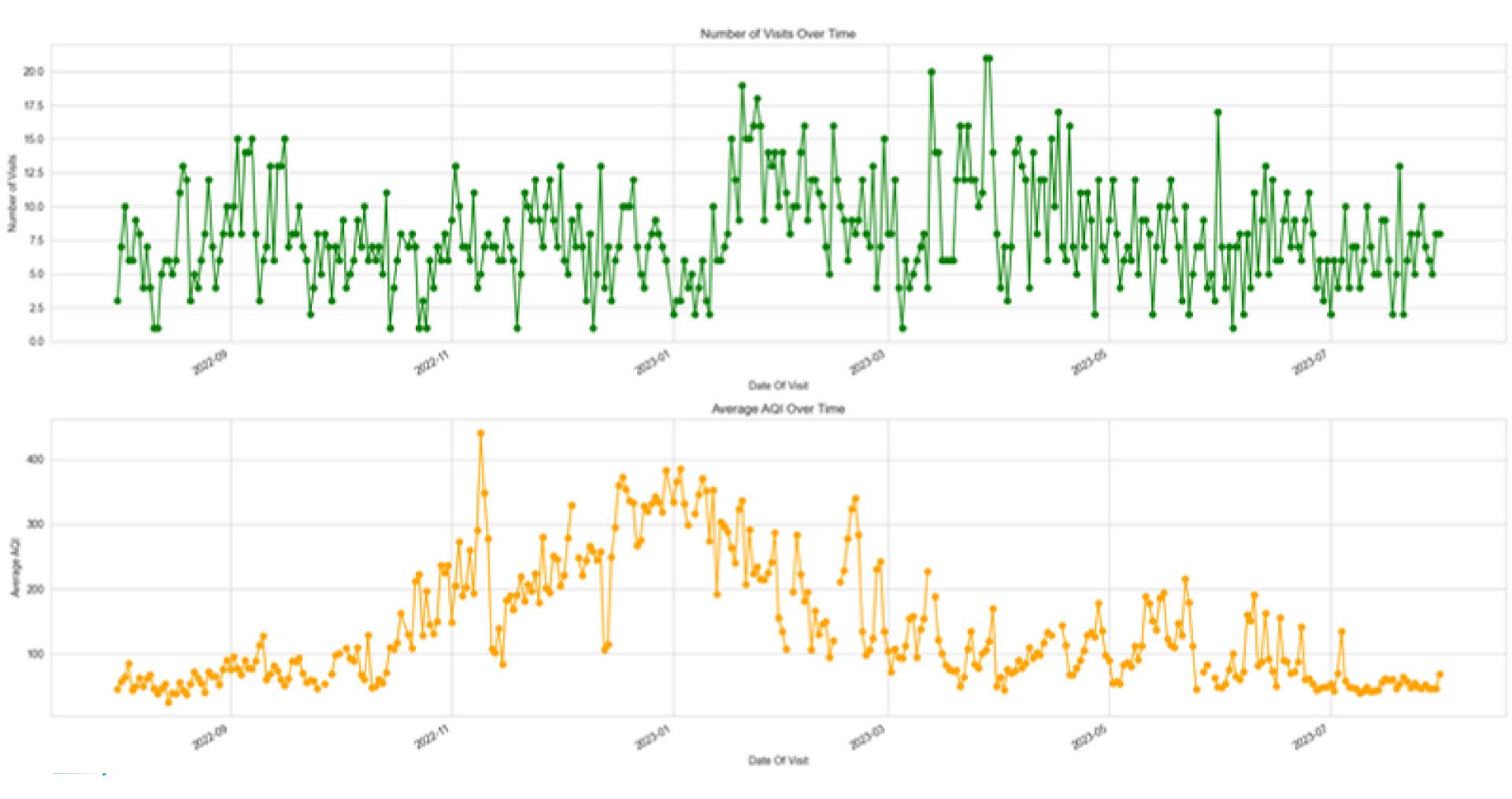

index	URI	HEADACH	GASTROIN	FEVER	AQI	Max Temp	Min Temp	FATIGUE_	OTHERS
02-11-2021	0	1	0	0	100	30	17	0	0
03-11-2021	0	0	0	0	96	31	16	0	0
04-11-2021	0	0	0	0	84	31	16	0	0
05-11-2021	0	0	0	0	118	30	17	0	0
06-11-2021	0	0	0	0	79	30	15	0	0
07-11-2021	0	1	0	0	97	30	16	0	0
08-11-2021	0	0	0	0	93	28	15	1	0
09-11-2021	0	0	0	0	87	27	16	0	0
10-11-2021	1	0	0	1	91	25	16	1	0
11-11-2021	1	0	0	1	93	29	13	0	0
12-11-2021	0	0	0	0	94	28	13	0	0
13-11-2021	2	2	2	0	88	29	11	2	0
14-11-2021	1	0	0	0	90	26	13	0	1
15-11-2021	2	1	0	0	89	29	13	1	0
16-11-2021	2	0	0	0	109	28	13	0	0
17-11-2021	1	0	1	0	108	26	13	0	0
18-11-2021	2	0	0	0	114	29	11	1	0
19-11-2021	2	0	0	0	112	28	11	1	0
20-11-2021	0	0	0	0	111	28	13	0	0
21-11-2021	4	1	1	0	103	28	11	1	0
22-11-2021	2	0	1	0	94	28	11	0	0
23-11-2021	1	1	0	2	102	27	8	2	0
24-11-2021	2	0	0	0	111	28	9	2	0
25-11-2021	1	1	2	1	92	27	9	0	0
26-11-2021	2	0	1	0	92	26	10	0	0

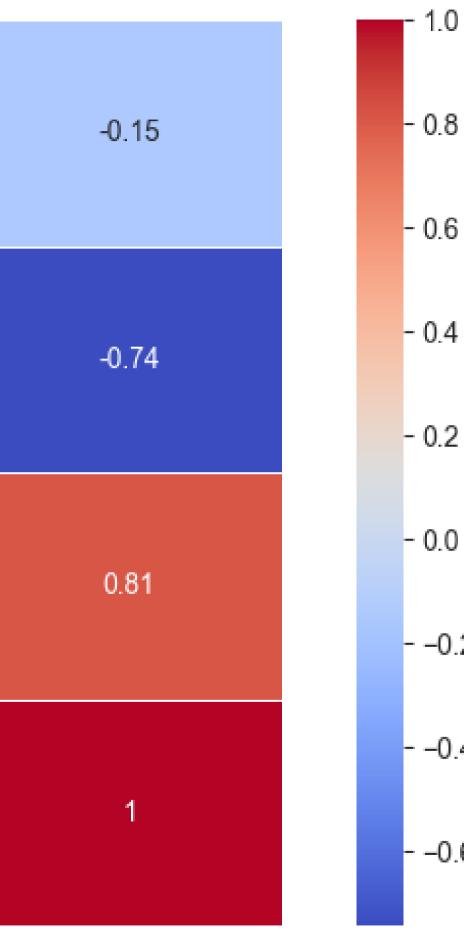


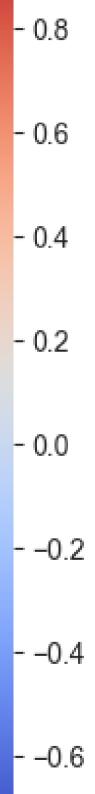



Exploratory Data Analysis








Top 10 Health Issues for Students

Correlation Heatmap

Number of Visits	1	0.035	-0.065
AQI	0.035	1	-0.65
Max Temp	-0.065	-0.65	1
Min Temp	-0.15	-0.74	0.81
	Number of Visits	AQI	Max Temp

Min Temp

ML Methodology

model forms of regression analysis, such as Poisson regression models [34], the SARIMA (seasonal autoregressive integrated moving average) model developed from the autoregressive integrated moving average (ARIMA) model became one of the most used forecasting models [26,27]. Beyond

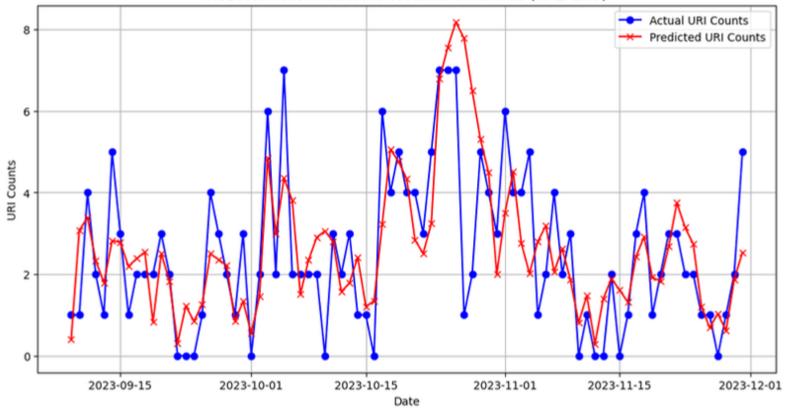
Data preparation of this sort allows for modern ML techniques such as XGBoost (eXtreme Gradient Boosting) and LightGBM (Light Gradient Boosting Machine), to be used, which again presents another challenge and layer of decisions to be made for researchers wishing to use these techniques, as the models' hyperparameters must be optimized, the model code implemented, and the models trained and validated appropriately on historical data. Automated time series machine learning (AutoTS) addresses

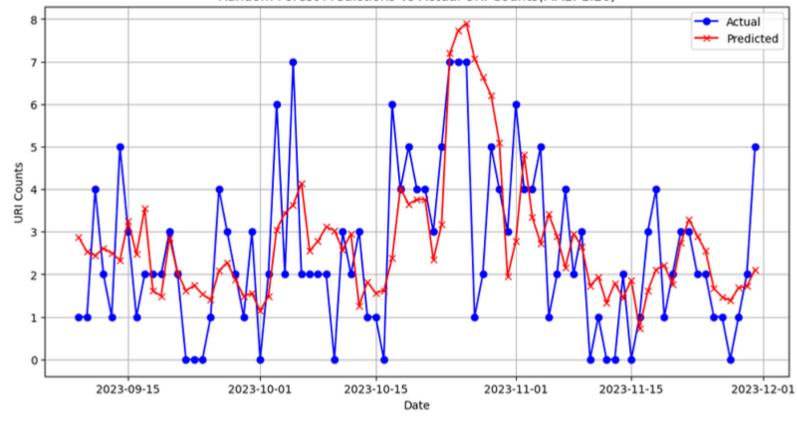
Olsavszky V, Dosius M, Vladescu C, Benecke J. Time Series Analysis and Forecasting with Automated Machine Learning on a National ICD-10 Database. International Journal of Environmental Research and Public Health. 2020; 17(14):4979. https://doi.org/10.3390/ijerph17144979

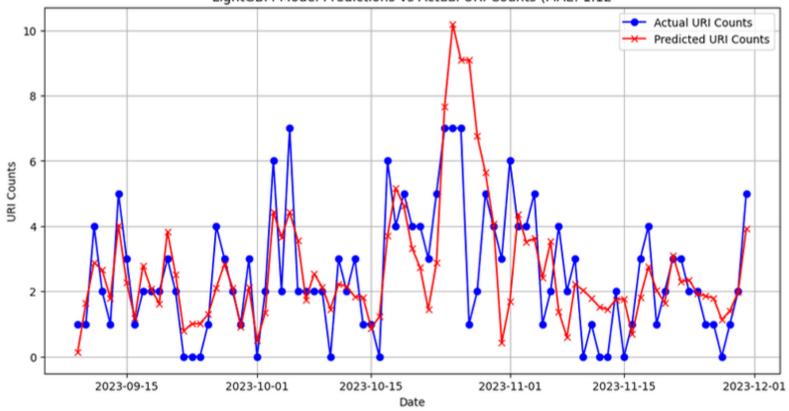
WHY ML AND NOT TIME SERIES?

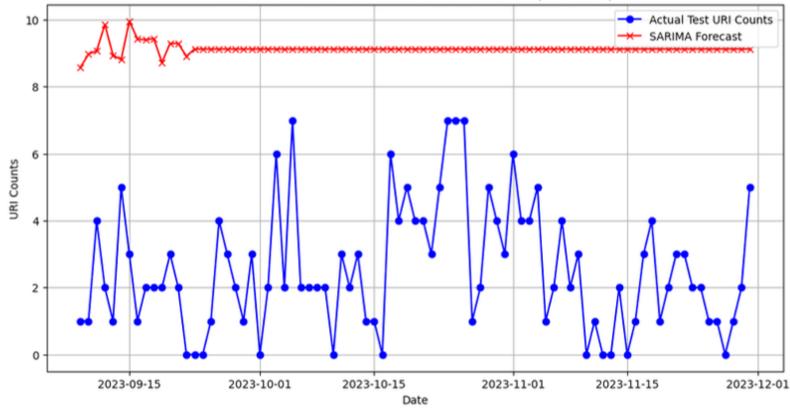
Zero-Inflation and Sparsity: The dataset has many zeros and low-frequency counts. Machine learning models can be equipped with techniques to handle zero-inflation and sparse data more effectively than SARIMA, which assumes a certain level of continuity in the data.

Multivariate Forecasting: Unlike SARIMA, which is univariate, machine learning models can naturally handle multiple input features simultaneously, allowing for multivariate forecasting. This means they can use all available data to predict the number of visits, rather than relying on the historical counts alone.

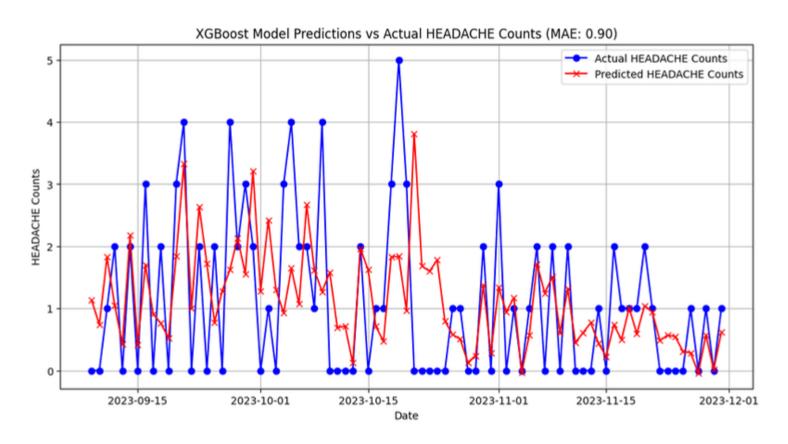

Scalability: These machine learning models are highly scalable and can handle larger datasets efficiently, which is beneficial if the amount of data grows over time.

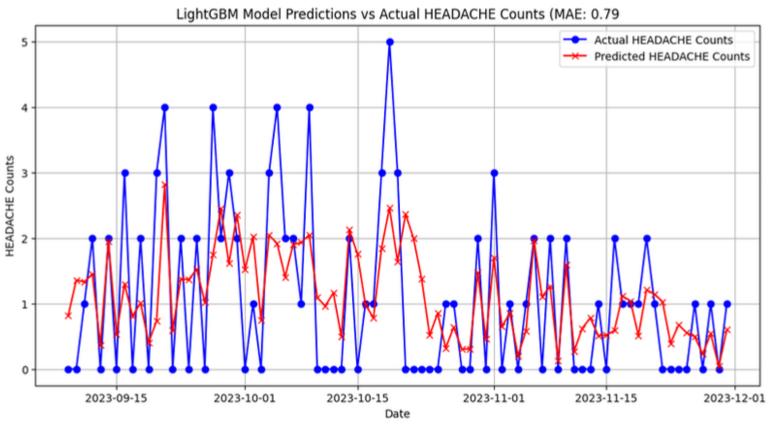

Feature Interactions and non-linear relationships: Factors such as AQI and temperature can interact in non-linear ways to affect health outcomes like 'FEVER' visits. ML models can automatically learn these, whereas SARIMA would require manual intervention to model such relationships, if it can model them at all.

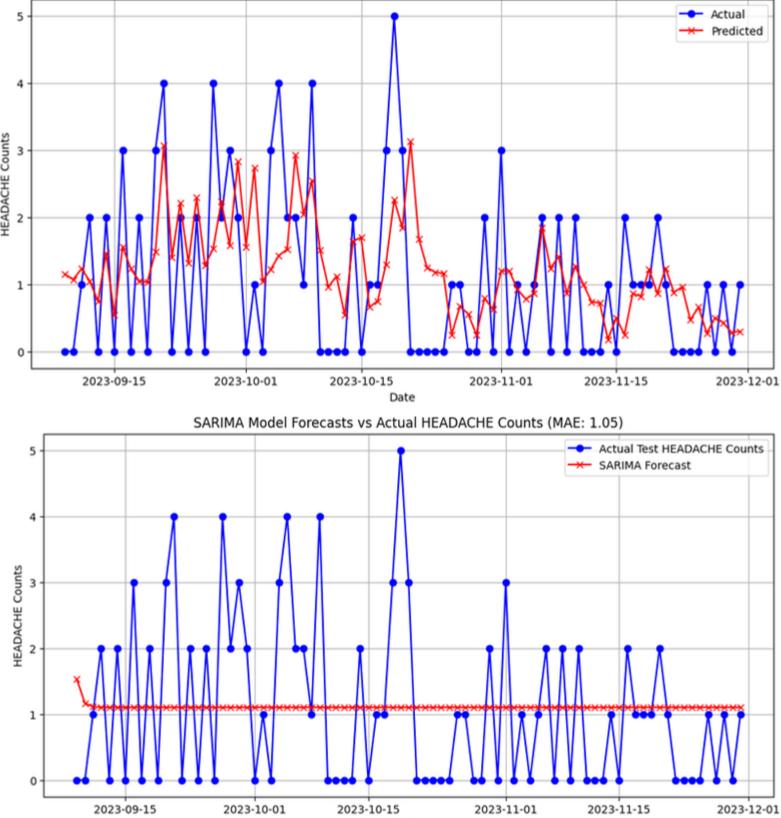

Model performance for URI


XGBoost Model Predictions vs Actual URI Counts (MAE: 1.05)

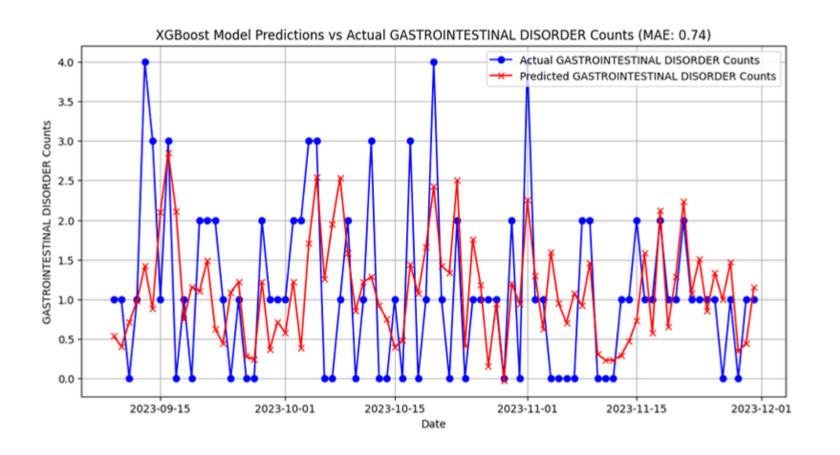
LightGBM Model Predictions vs Actual URI Counts (MAE: 1.12

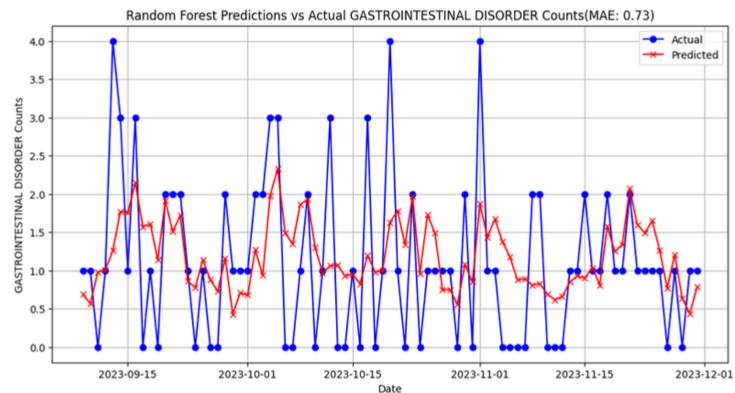


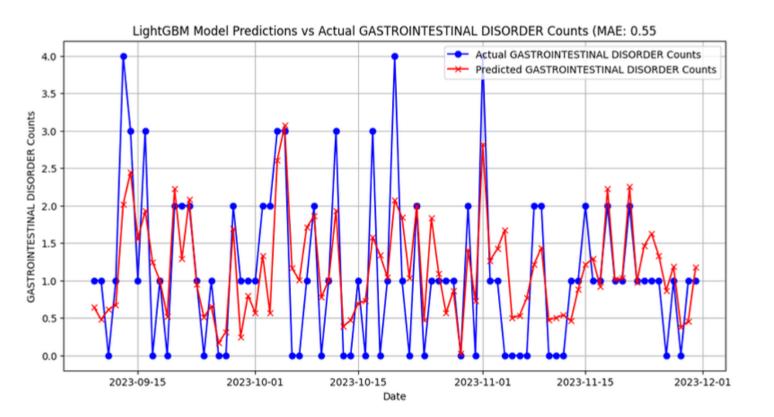

Random Forest Predictions vs Actual URI Counts(MAE: 1.28)

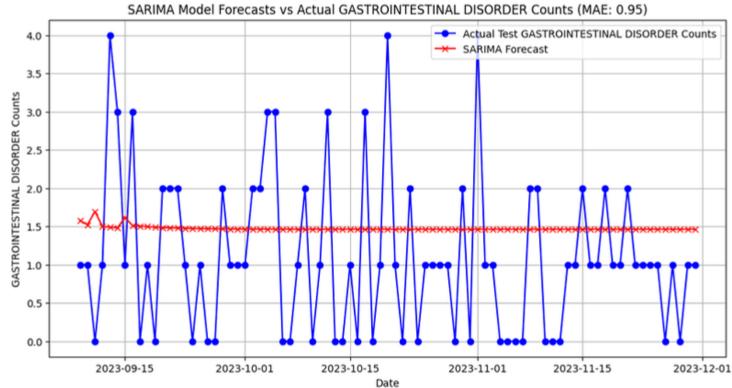


Model performance for Headache

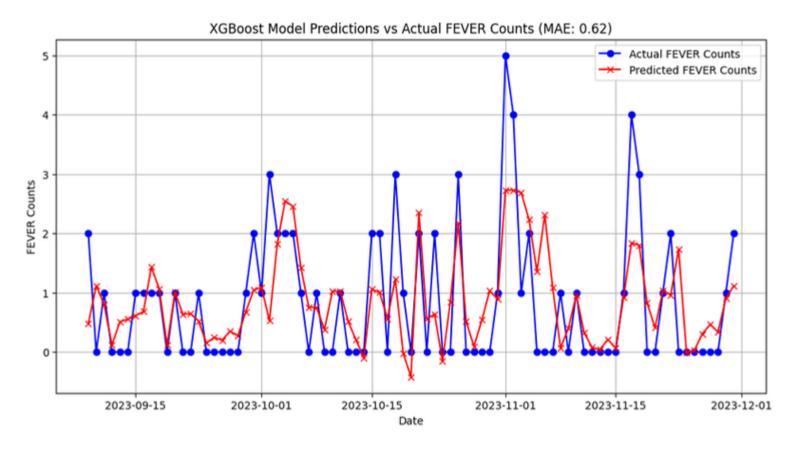


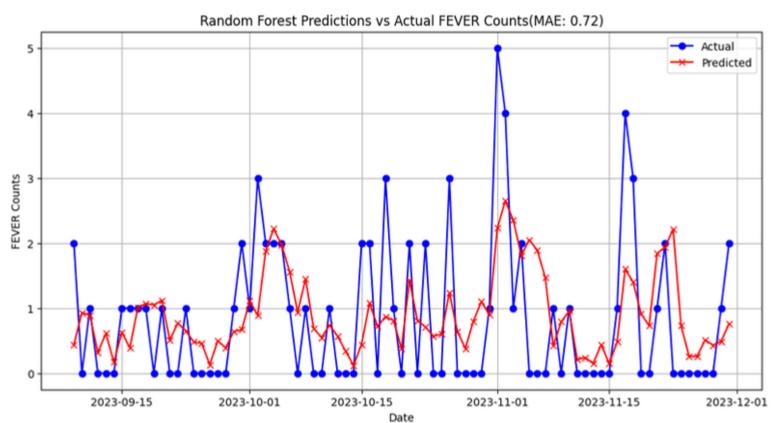


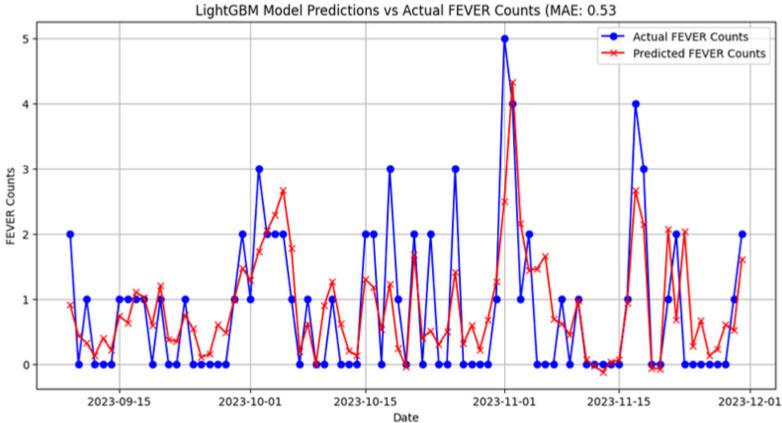

Date

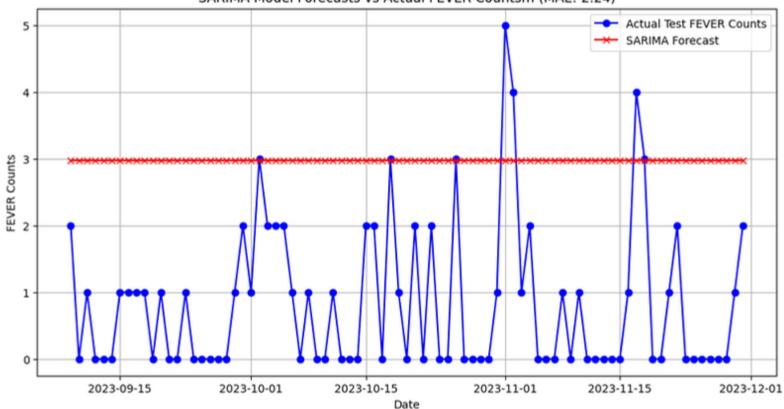

Random Forest Predictions vs Actual HEADACHE Counts(MAE: 0.96)

Model performance for Gastrointestinal Disorder

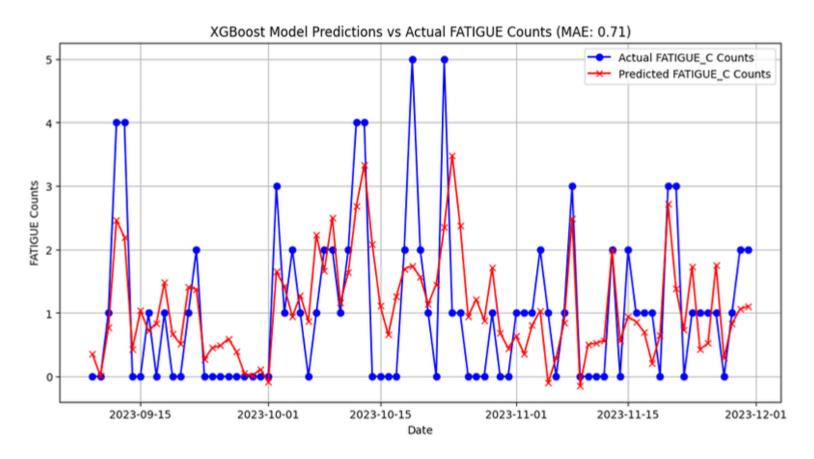


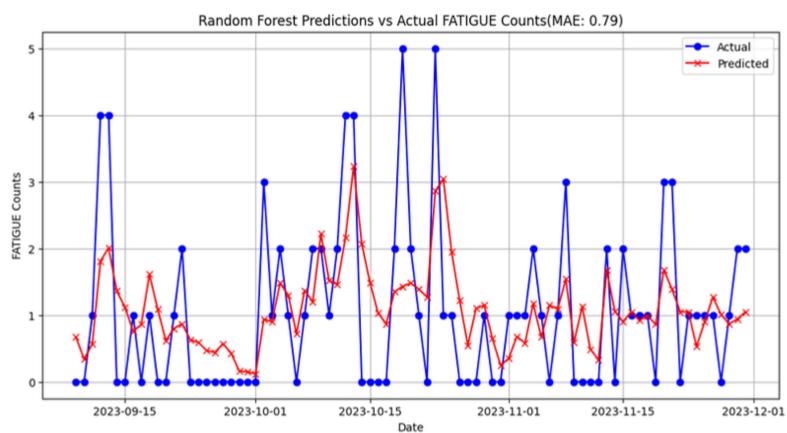


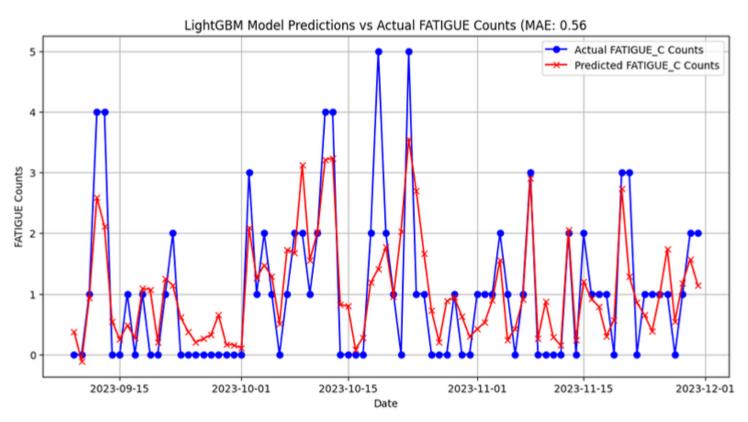


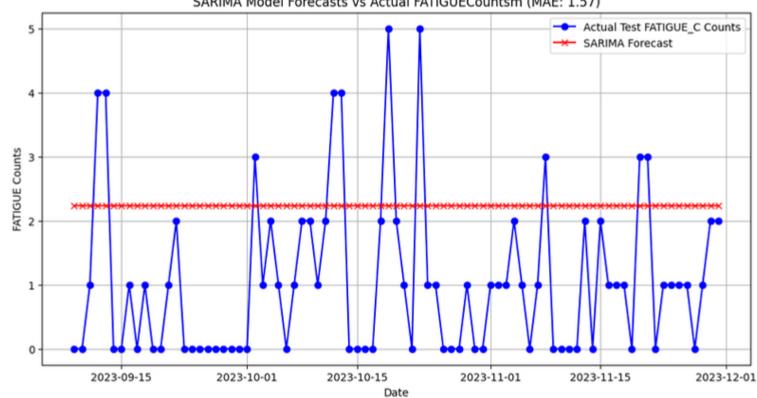


Model performance for Fever

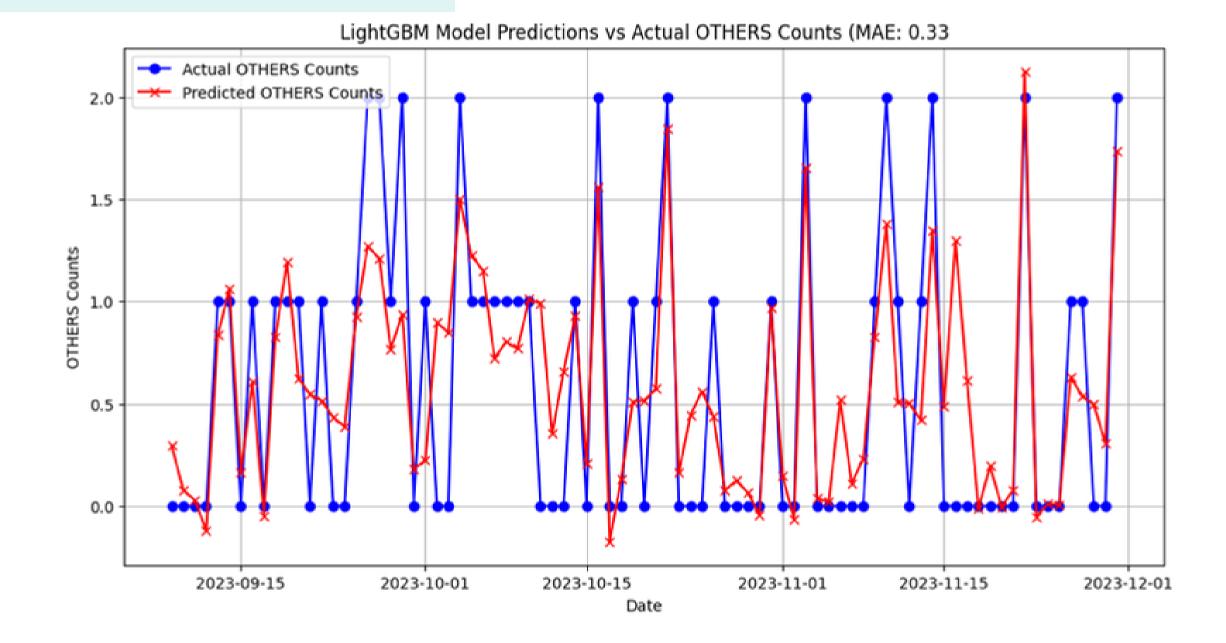


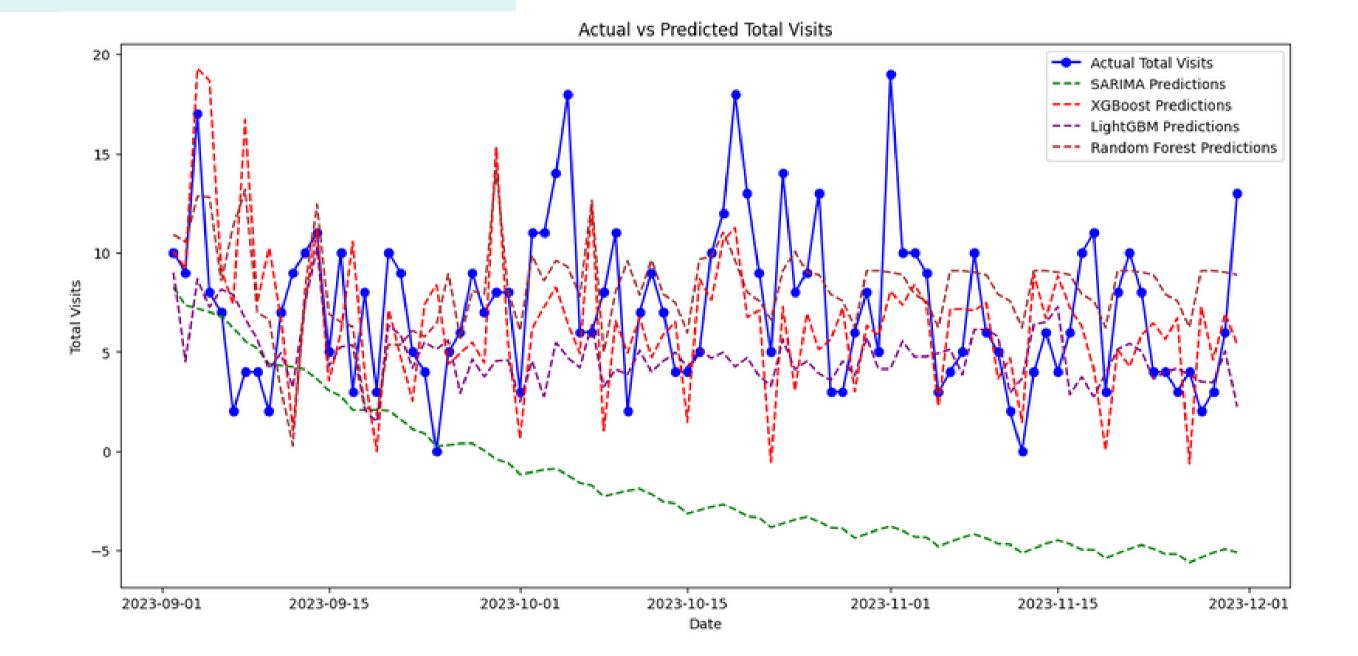





SARIMA Model Forecasts vs Actual FEVER Countsm (MAE: 2.24)

Model performance for Fatigue





Model performance for all Categories of Symptoms

TOTAL NO. OF VISITS

COMPARISON OF MAE SCORES OF DIFFERENT MODELS

	XGBoost	LightGBM	SARIMA	Random forest
URI	1.05	1.12	6.61	1.28
HEADACHE	0.9	0.79	1.05	0.96
GASTROINTESTINAL DISORDER	0.74	0.55	0.95	0.73
FEVER	0.62	0.53	2.24	0.72
FATIGUE	0.71	0.56	1.57	0.79

LIGHTGBM VS XGBOOSTING

LightGBM

Pros:

- High efficiency and speed: It can handle large amounts of data more quickly than XGBoost, making it a good choice for our Project
- Requires less memory than XGBoost

Cons:

- With smaller datasets, LightGBM can overfit more easily compared to XGBoost
- Might not be as robust as XGBoost in certain scenarios

XGBoost

Pros:

- distributions
- performance.

Cons:

- LightGBM

 Model Robustness: More robust and can handle a variety of data types and • Fine-grained Tuning: More options for parameter tuning to improve the model's

• Can be computationally expensive, especially with large datasets Generally requires more memory than

PERFORMANCE METRICS OF LIGHTGBM

Performance	URI	HEADACHE	GASTROINTESTINAL DISORDER
Mean Absolute	1.122880066600	0.789327804674	0.545100626332439
Error	7932	2257	
Root Mean	2.804792829192	1.241371152458	1.1599727512865052
Squared Error	9294	712	
Mean Absolute Percentage Error	1.002590230703 0914	0.464280750416 4691	0.4669016362682631
Mean Squared	7.866862814692	1.541002338156	1.3455367837271843
Error	077	6713	

FEVER	FATIGUE
0.534219974995 5514	0.561690100304 2772
0.734047486502 1169	0.783884613633 3598
0.376311946166 07133	0.352315974284 1836
0.538825712440 0756	0.614475087491 1218

PERFORMANCE METRICS

MEAN ABSOLUTE ERROR (MAE):

- provides an easily interpretable measure of forecasting accuracy by representing the average magnitude of errors in the same unit as the target variable
- less sensitive to outliers than RMSE
- easy to implement
- gives equal weight to both underestimation and overestimation, providing a balanced assessment of forecasting errors.
- scale independence

ROOT MEAN SQUARED ERROR (RMSE):

• sensitive to the magnitude of errors, emphasizing larger errors more than smaller ones.

• squaring the errors in RMSE penalizes larger deviations between predicted and actual values, making it particularly relevant in situations where large errors are of concern - such as healthcare • allows for easy comparison between different models or different forecasting horizons • scale independant

HYPERPARAMETER TUNING

XGBOOST:

- LEARNING RATE
- NUMBER OF TREES
- MAXIMUM DEPTH
- MINIMUM WEIGHT
- SUBSAMPLE
- COLSAMPLE BYTREE/COLSAMPLE BYLEVEL/COLSAMPLE BYNODE

LIGHTGBM:

- LEARNING RATE
- NUMBER OF TREES
- MAXIMUM DEPTH
- MINIMUM WEIGHT
- BAGGING FRACTION
- FEATURE FRACTION

VARIED WITH LITTLE TO NO CHANGE IN ACCURACY

RANDOM FOREST:

- NUMBER OF TREES
- MAXIMUM DEPTH
- MINIMUM SAMPLES SPLIT
- MINIMUM SAMPLES LEAF
- MAXIMUM FEATURES

CHALLENGES

Limited Data

Data Processing

Small Population on Campus

Predicted number of medicines for September 2023 - November 2023

Category	Month	Occurrences	Min Range (3x)	Max Range (5x)	Medicines
FEVER	September	24	72	120	COMBIFLAM
HEADACHE	September	38	114	190	COMBIFLAM
GASTROINTESTINAL DISORDER	September	35	105	175	DIGENE, SPC
URI	September	62	186	310	MONTAIR LC
FATIGUE	September	19	57	95	COMBIFLAM
FEVER	October	24	72	120	COMBIFLAM
HEADACHE	October	34	102	170	COMBIFLAM
GASTROINTESTINAL DISORDER	October	34	102	170	DIGENE, SPC
URI	October	105	315	525	MONTAIR LC
FATIGUE	October	41	123	205	COMBIFLAM
FEVER	November	23	69	115	COMBIFLAM
HEADACHE	November	22	66	110	COMBIFLAM
GASTROINTESTINAL DISORDER	November	27	81	135	DIGENE, SPC
URI	November	56	168	280	MONTAIR LC
FATIGUE	November	27	81	135	COMBIFLAM

M, DOLO, MEFTAL FORTE, AZEE

M, NAXDOM, SARIDON, DISPRIN

POROLAC DS, ORS, RACIPER, PANTOP, DROTIN, RANTAC

LC, AZEE, ALLEGRA, CITRIZINE, DOLO, SINAREST

M, ELECTRAL, FLEXONMR, DOLO, DROTIN, VERTIN

M, DOLO, MEFTAL FORTE, AZEE

M, NAXDOM, SARIDON, DISPRIN

POROLAC DS, ORS, RACIPER, PANTOP, DROTIN, RANTAC

LC, AZEE, ALLEGRA, CITRIZINE, DOLO, SINAREST

M, ELECTRAL, FLEXONMR, DOLO, DROTIN, VERTIN

M, DOLO, MEFTAL FORTE, AZEE

M, NAXDOM, SARIDON, DISPRIN

POROLAC DS, ORS, RACIPER, PANTOP, DROTIN, RANTAC

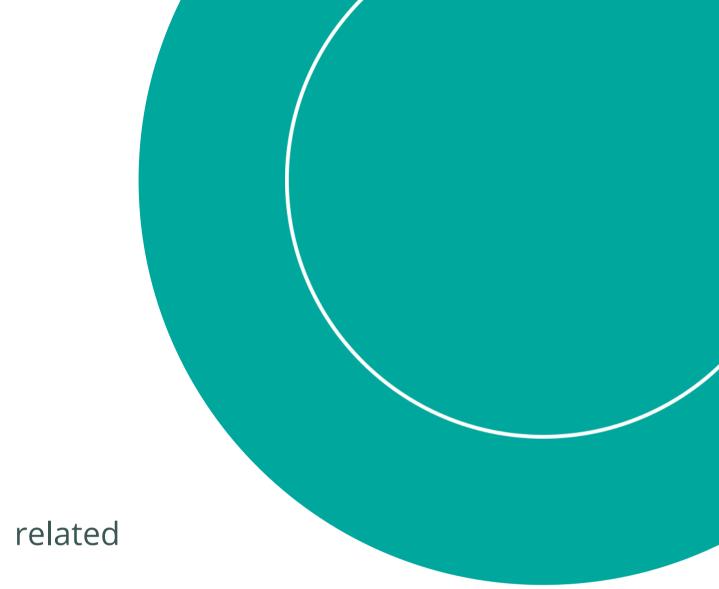
LC, AZEE, ALLEGRA, CITRIZINE, DOLO, SINAREST

M, ELECTRAL, FLEXONMR, DOLO, DROTIN, VERTIN

Deployability

DEPLOYABILITY

Possible scenarios for deployment: 01


- Plaksha's Healthcare Centre can deploy the model, especially in the future when there are more people on campus. The model would have to be trained in intervals to improve accuracy and scale to a larger database
- Other Universities can also potentially use our mode to predict symptom prevalence and optimise their medical inventory
- Tools for deployability: 02
 - Use GitLab
 - Plaksha's Sharepoint platform
 - Creating a user-friendly web interface / EHRS system

POSSIBLE CHALLENGES

- Black swan events (i.e., epidemics such as COVID-19)
- Cannot predict injuries and therefore cannot help optimize for related medical stock
- More specificity required for aggregated symptoms
- Data does not include follow-up details to evaluate whether the treatment was successful

POLICY IMPLICATIONS FOR PLAKSHA

- Put efficient and strict guidelines in place for data-entering in the Healthcare Centre
- Further in the future, data-driven campus health policies based on trends in health
- Making Plaksha community more aware of health risks • Extend Healthcare Centre's ability to cater to more serious
- health conditions as well

THANK YOU